• TMG 甲基化必需品将五种关键营养素(TMG、锌、叶酸、B12 和 B6)结合在一种协同混合物中,为健康甲基化提供有针对性的支持。

    TMG 甲基化必需品将五种关键营养素(TMG、锌、叶酸、B12 和 B6)结合在一种协同混合物中,为健康甲基化提供有针对性的支持。

    TMG 甲基化必需品取代了我们原来仅含有 TMG 的 TMG 产品,因为我们希望通过单一产品的便利性提供全面的甲基化支持。

New Improved Tmg Formula

PRODUCT NEWSOTHER LONGEVITY SUPPLEMENTS

New & Improved TMG Formula

 

TMG, Methylation and Aging

 

Trimethylglycine (TMG) is a molecule produced naturally in the body and it plays an important role in the DNA methylation process. Proper methylation is vital for healthy aging. (2) Research shows that methylation decreases as people age.

 

Methylation issues can be caused by:
  • nutrient deficiencies
  • genetic mutations (MTHFR)
  • physical or environmental stressors

 

The process of methylation is complex, as the patterns of methylation change throughout your life.

 

Ingredients to Support Methylation

 

  • Trimethyglycine (TMG): A methyl donor supporting optimal methylation pathways and enhancing mitochondrial function, while protecting cells against environmental stress. (3) †
  • Zinc: A vital cofactor for enzymes that contribute to the proper functioning of the antioxidant defense system. (4) †
  • Vitamin B12: Essential for energy production, and an important regulator of DNA methylation. (5) †
  • Vitamin B6: Involved in over 100 biochemical reactions, including neurotransmitter synthesis and mood regulation. It’s been shown to reduce elevated homocysteine levels, often associated with illness.†
  • Folate: A key vitamin involved in DNA methylation, vital to breaking down homocysteine, an amino acid that can exert harmful effects in the body if it is present in high amounts.†

 

† These statements have not been evaluated by the FDA. These products are not intended to diagnose, treat, cure, or prevent any disease.

 

Acid-Resistant Enteric Capsules

 

Reaching the small intestines intact is critical to maximize uptake. Our Acid-Resistant Enteric Capsules have been engineered to make it through the harsh, acidic environment of the stomach without being degraded. They release their payload only when they reach the alkaline environment of the small intestine.